Faster-than-light (also superluminal or FTL) communication and travel refer to the propagation of information or matter faster than the speed of light. The special theory of relativity implies that only particles with zero rest mass may travel at the speed of light. Tachyons, particles whose speed exceeds that of light, have been hypothesized but the existence of such particles would violate causality and the consensus of physicists is that such particles cannot exist.
On the other hand, what some physicists refer to as "apparent" or "effective" FTL depends on the hypothesis that unusually distorted regions of spacetime might permit matter to reach distant locations in less time than light could in normal or undistorted spacetime. According to the current scientific theories, matter is required to travel at subluminally Slower-than-light (also subluminal or STL) speed with respect to the locally distorted spacetime region. Apparent FTL is not excluded by general relativity, however, any Apparent FTL physical plausibility is speculative. Examples of Apparent FTL proposals are the Alcubierre drive and the traversable wormhole.
In the context of this article, FTL is the transmission of information or matter faster than c, a constant equal to the speed of light in a vacuum, which is 299,792,458 m/s (by definition of the meter) or about 186,282.397 miles per second. This is not quite the same as traveling faster than light, since:
Neither of these phenomena violates special relativity or creates problems with causality, and thus neither qualifies as FTL as described here.
In the following examples, certain influences may appear to travel faster than light, but they do not convey energy or information faster than light, so they do not violate special relativity.