A SQUID (for superconducting quantum interference device) is a very sensitive magnetometer used to measure extremely subtle magnetic fields, based on superconducting loops containing Josephson junctions.
SQUIDs are sensitive enough to measure fields as low as 5 aT (5×10−18 T) with a few days of averaged measurements. Their noise levels are as low as 3 fT·Hz−½. For comparison, a typical refrigerator magnet produces 0.01 tesla (10−2 T), and some processes in animals produce very small magnetic fields between 10−9 T and 10−6 T. Recently invented SERF atomic magnetometers are potentially more sensitive and do not require cryogenic refrigeration but are orders of magnitude larger in size (~1 cm3) and must be operated in a near-zero magnetic field.
There are two main types of SQUID: direct current (DC) and radio frequency (RF). RF SQUIDs can work with only one Josephson junction (superconducting tunnel junction), which might make them cheaper to produce, but are less sensitive.
The DC SQUID was invented in 1964 by Robert Jaklevic, John J. Lambe, James Mercereau, and Arnold Silver of Ford Research Labs after Brian David Josephson postulated the Josephson effect in 1962, and the first Josephson junction was made by John Rowell and Philip Anderson at Bell Labs in 1963. It has two Josephson junctions in parallel in a superconducting loop. It is based on the DC Josephson effect. In the absence of any external magnetic field, the input current splits into the two branches equally. If a small external magnetic field is applied to the superconducting loop, a screening current, , begins circulating in the loop that generates a magnetic field canceling the applied external flux. The induced current is in the same direction as in one of the branches of the superconducting loop, and is opposite to in the other branch; the total current becomes in one branch and in the other. As soon as the current in either branch exceeds the critical current, , of the Josephson junction, a voltage appears across the junction.