*** Welcome to piglix ***

Supercompact cardinal


In set theory, a supercompact cardinal is a type of large cardinal. They display a variety of reflection properties.

If λ is any ordinal, κ is λ-supercompact means that there exists an elementary embedding j from the universe V into a transitive inner model M with critical point κ, j(κ)>λ and

That is, M contains all of its λ-sequences. Then κ is supercompact means that it is λ-supercompact for all ordinals λ.

Alternatively, an uncountable cardinal κ is supercompact if for every A such that |A| ≥ κ there exists a normal measure over [A]< κ, in the following sense.

[A]< κ is defined as follows:

An ultrafilter U over [A]< κ is fine if it is κ-complete and , for every . A normal measure over [A]< κ is a fine ultrafilter U over [A]< κ with the additional property that every function such that is constant on a set in . Here "constant on a set in U" means that there is such that .


...
Wikipedia

...