*** Welcome to piglix ***

Super cluster


A supercluster is a large group of smaller galaxy clusters or galaxy groups, which is among the largest-known structures of the cosmos. The Milky Way is part of the Local Group galaxy cluster (that contains more than 54 galaxies), which in turn is part of the Laniakea Supercluster. This supercluster spans over 500 million light-years, while the Local Group spans over 10 million light-years. The number of superclusters in the observable universe is estimated to be 10 million.

Galaxies are grouped into clusters instead of being dispersed randomly. Clusters of galaxies, in turn, are grouped together to form superclusters. Typically, superclusters contain dozens of individual clusters throughout an area of space about 150 million light-years across. Unlike clusters, most superclusters are not bound together by gravity. The component clusters are generally shifting away from each other due to the Hubble flow.

The Milky Way galaxy falls within the Local Group, which is a poor and irregular cluster of galaxies. Poor clusters may contain only a few dozen galaxies, as compared to rich clusters with hundreds or even thousands. The Local Group is in the Local Supercluster (also known as the Virgo Supercluster), which has a diameter of 100 million light-years. The Local Supercluster contains a total of about 1015 times the mass of the Sun.

The biggest cluster in the observable universe is called the Great Attractor. Its gravity is so strong that the Local Supercluster, including the Milky Way, is moving in a direction towards it at a rate of several hundred kilometers per second. Speeds at this cosmic scale are measured relative to the Hubble flow frame of reference. The biggest supercluster outside the local universe is the Perseus–Pegasus Filament. It contains the Perseus supercluster and it spans about a billion light-years, making it one of the largest known structures in the universe.

Research has tried to understand the way superclusters are arranged in space. Maps are used to display the positions of 1.6 million galaxies. Three-dimensional maps are used to further understand the positions of these superclusters. To map them three-dimensionally, the position of the galaxy in the sky as well as the galaxy's redshift are used for calculation. The galaxy's redshift is used with Hubble's law to determine its position in three-dimensional space.


...
Wikipedia

...