The sulfur–iodine cycle (S–I cycle) is a three-step thermochemical cycle used to produce hydrogen.
The S–I cycle consists of three chemical reactions whose net reactant is water and whose net products are hydrogen and oxygen. All other chemicals are recycled. The S–I process requires an efficient source of heat.
The three reactions that produce hydrogen are as follows:
The sulfur and iodine compounds are recovered and reused, hence the consideration of the process as a cycle. This S–I process is a chemical heat engine. Heat enters the cycle in high-temperature endothermic chemical reactions 2 and 3, and heat exits the cycle in the low-temperature exothermic reaction 1. The difference between the heat entering and leaving the cycle exits the cycle in the form of the heat of combustion of the hydrogen produced.
The characteristics of the S–I process can be described as follows:
The S–I cycle was invented at General Atomics in the 1970s. The Japan Atomic Energy Agency (JAEA) has conducted successful experiments with the S–I cycle in the Helium cooled High Temperature Test Reactor, a reactor which reached first criticality in 1998, JAEA have the aspiration of using further nuclear high-temperature generation IV reactors to produce industrial scale quantities of hydrogen. (The Japanese refer to the cycle as the IS cycle.) Plans have been made to test larger-scale automated systems for hydrogen production. Under an International Nuclear Energy Research Initiative (INERI) agreement, the French CEA, General Atomics and Sandia National Laboratories are jointly developing the sulfur-iodine process. Additional research is taking place at the Idaho National Laboratory, in Canada, Korea and Italy.