subtilisin | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC number | 3.4.21.62 | ||||||||
CAS number | 9014-01-1 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
Gene Ontology | AmiGO / EGO | ||||||||
|
Search | |
---|---|
PMC | articles |
PubMed | articles |
NCBI | proteins |
Subtilisin BPN' | |
---|---|
Crystal structure of subtilisin.
|
|
Identifiers | |
Symbol | apr |
Entrez | 5712479 |
PDB | 1st2 More structures |
UniProt | P00782 |
Other data | |
EC number | 3.4.21.62 |
Subtilisin is a non-specific protease (a protein-digesting enzyme) initially obtained from Bacillus subtilis.
Subtilisins belong to subtilases, a group of serine proteases that - like all serine proteases - initiate the nucleophilic attack on the peptide (amide) bond through a serine residue at the active site. Subtilisins typically have molecular weights of about 20,000 to 45,000 dalton. They can be obtained from certain types of soil bacteria, for example, Bacillus amyloliquefaciens from which they are secreted in large amounts.
Subtilisin is also known as alcalase, alcalase 0.6L, alcalase 2.5L, ALK-enzyme, bacillopeptidase A, bacillopeptidase B, Bacillus subtilis alkaline proteinase bioprase, bioprase AL 15, bioprase APL 30, colistinase, subtilisin J, subtilisin S41, subtilisin Sendai, subtilisin GX, subtilisin E, subtilisin BL, genenase I, esperase, maxatase, thermoase PC 10, protease XXVII, thermoase, superase, subtilisin DY, subtilopeptidase, SP 266, savinase 8.0L, savinase 4.0T, kazusase, protease VIII, opticlean, Bacillus subtilis alkaline proteinase, protin A 3L, savinase, savinase 16.0L, savinase 32.0 L EX, orientase 10B, protease S, serine endopeptidase).
The structure of subtilisin has been determined by X-ray crystallography. It is a 275-residue globular protein with several alpha-helices, and a large beta-sheet. It is structurally unrelated to the chymotrypsin-clan of serine proteases, but uses the same type of catalytic triad in the active site. This makes it a classic example of convergent evolution.