Submarine landslides are marine landslides that transport sediment across the continental shelf and into the deep ocean. A submarine landslide is initiated when the downwards driving stress (gravity and other factors) exceeds the resisting stress of the seafloor slope material causing movements along one or more concave to planar rupture surfaces. Submarine landslides take place in a variety of different settings including planes as low as 1° and can cause significant damage to both life and property. Recent advances have been made in understanding the nature and processes of submarine landslides through the use of sidescan sonar and other seafloor mapping technology.
Submarine Landslides have different causes which relate to both the geological attributes of the landslide material and transient environmental factors affecting the submarine environment. Common causes of landslides include: i) presence of weak geological layers, ii) overpressure due to rapid accumulation of sedimentary deposits, iii) earthquakes, iv) storm wave loading and hurricanes, v) gas hydrate dissociation, vi) groundwater seepage and high pore water pressure, vii) glacial loading, viii) volcanic island growth, and ix) oversteepening.
The presence of weak geological layers is a factor which contributes to submarine landslides at all scales. This has been confirmed by seafloor imaging such as swath bathymetric mapping and 3D seismic reflection data. Despite their ubiquity, very little is known about the nature and characteristics of the weak geological layers, as they have rarely been sampled and very little geotechnical work has been conducted on them. An example of a slide which was caused by weak geological layers is the Storegga slide, near Norway which had a total volume of 3,300 km³.