*** Welcome to piglix ***

Subband coding


In signal processing, sub-band coding (SBC) is any form of transform coding that breaks a signal into a number of different frequency bands, typically by using a fast Fourier transform, and encodes each one independently. This decomposition is often the first step in data compression for audio and video signals.

SBC is the core technique used in many popular lossy audio compression algorithms including MP3.

The utility of SBC is perhaps best illustrated with a specific example. When used for audio compression, SBC exploits auditory masking in the human auditory system. Human ears are normally sensitive to a wide range of frequencies, but when a sufficiently loud signal is present at one frequency, the ear will not hear weaker signals at nearby frequencies. We say that the louder signal masks the softer ones. The louder signal is called the masker, and the point at which masking occurs is known as the masking threshold.

The basic idea of SBC is to enable a data reduction by discarding information about frequencies which are masked. The result differs from the original signal, but if the discarded information is chosen carefully, the difference will not be noticeable, or more importantly, objectionable.

The simplest way to digitally encode audio signals is pulse-code modulation (PCM), which is used on audio CDs, DAT recordings, and so on. Digitization transforms continuous signals into discrete ones by sampling a signal's amplitude at uniform intervals and rounding to the nearest value representable with the available number of bits. This process is fundamentally inexact, and involves two errors: discretization error, from sampling at intervals, and quantization error, from rounding.

The more bits used to represent each sample, the finer the granularity in the digital representation, and thus the smaller the error. Such quantization errors may be thought of as a type of noise, because they are effectively the difference between the original source and its binary representation. With PCM, the only way to mitigate the audible effects of these errors is to use enough bits to ensure that the noise is low enough to be masked either by the signal itself or by other sources of noise. A high quality signal is possible, but at the cost of a high bitrate (e.g., over 700 kbit/s for one channel of CD audio). In effect, many bits are wasted in encoding masked portions of the signal because PCM makes no assumptions about how the human ear hears.


...
Wikipedia

...