*** Welcome to piglix ***

Strong CP problem


In particle physics, the strong CP problem is the puzzling question of why quantum chromodynamics (QCD) does not seem to break CP-symmetry. CP stands for charge parity.

According to quantum chromodynamics there could be a violation of CP symmetry in the strong interactions. However, there is no experimentally known violation of the CP-symmetry in strong interactions. As there is no known reason for it to be conserved in QCD specifically, this is a "fine tuning" problem known as the strong CP problem.

The strong CP problem is sometimes regarded as an unsolved problem in physics.

CP-symmetry states that the laws of physics should be the same if a particle were interchanged with its antiparticle (C symmetry), and then left and right were swapped (P symmetry). In particle physics, CP violation (CP standing for Charge Parity) is a violation of the postulated CP-symmetry (or Charge conjugation Parity symmetry): the combination of C-symmetry (charge conjugation symmetry) and P-symmetry (parity symmetry).

QCD does not violate the CP-symmetry as easily as the electroweak theory; unlike the electroweak theory in which the gauge fields couple to chiral currents constructed from the fermionic fields, the gluons couple to vector currents. Experiments do not indicate any CP violation in the QCD sector. For example, a generic CP violation in the strongly interacting sector would create the electric dipole moment of the neutron which would be comparable to 10−18 e·m while the experimental upper bound is roughly one trillionth that size.


...
Wikipedia

...