*** Welcome to piglix ***

Stream cipher


A stream cipher is a symmetric key cipher where plaintext digits are combined with a pseudorandom cipher digit stream (keystream). In a stream cipher, each plaintext digit is encrypted one at a time with the corresponding digit of the keystream, to give a digit of the ciphertext stream. Since encryption of each digit is dependent on the current state of the cipher, it is also known as state cipher. In practice, a digit is typically a bit and the combining operation an exclusive-or (XOR).

The pseudorandom keystream is typically generated serially from a random seed value using digital shift registers. The seed value serves as the cryptographic key for decrypting the ciphertext stream. Stream ciphers represent a different approach to symmetric encryption from block ciphers. Block ciphers operate on large blocks of digits with a fixed, unvarying transformation. This distinction is not always clear-cut: in some modes of operation, a block cipher primitive is used in such a way that it acts effectively as a stream cipher. Stream ciphers typically execute at a higher speed than block ciphers and have lower hardware complexity. However, stream ciphers can be susceptible to serious security problems if used incorrectly (see stream cipher attacks); in particular, the same starting state (seed) must never be used twice.

Stream ciphers can be viewed as approximating the action of a proven unbreakable cipher, the one-time pad (OTP), sometimes known as the Vernam cipher. A one-time pad uses a keystream of completely random digits. The keystream is combined with the plaintext digits one at a time to form the ciphertext. This system was proved to be secure by Claude E. Shannon in 1949. However, the keystream must be generated completely at random with at least the same length as the plaintext and cannot be used more than once. This makes the system cumbersome to implement in many practical applications, and as a result the one-time pad has not been widely used, except for the most critical applications. Key generation, distribution and management are critical for those applications.


...
Wikipedia

...