*** Welcome to piglix ***

Strahler Stream Order


In mathematics, the Strahler number or Horton–Strahler number of a mathematical tree is a numerical measure of its branching complexity.

These numbers were first developed in hydrology by Robert E. Horton (1945) and Arthur Newell Strahler (1952, 1957); in this application, they are referred to as the Strahler stream order and are used to define stream size based on a hierarchy of tributaries. They also arise in the analysis of L-systems and of hierarchical biological structures such as (biological) trees and animal respiratory and circulatory systems, in register allocation for compilation of high-level programming languages and in the analysis of social networks. Alternative stream ordering systems have been developed by Shreve and Hodgkinson et al. A statistical comparison of Strahler and Shreve systems, together with an analysis of stream/link lengths, is given by Smart

All trees in this context are directed graphs, oriented from the root towards the leaves; in other words, they are arborescences. The degree of a node in a tree is just its number of children. One may assign a Strahler number to all nodes of a tree, in bottom-up order, as follows:

The Strahler number of a tree is the number of its root node.

Algorithmically, these numbers may be assigned by performing a depth-first search and assigning each node's number in postorder. The same numbers may also be generated via a pruning process in which the tree is simplified in a sequence of stages, where in each stage one removes all leaf nodes and all of the paths of degree-one nodes leading to leaves: the Strahler number of a node is the stage at which it would be removed by this process, and the Strahler number of a tree is the number of stages required to remove all of its nodes. Another equivalent definition of the Strahler number of a tree is that it is the height of the largest complete binary tree that can be homeomorphically embedded into the given tree; the Strahler number of a node in a tree is similarly the height of the largest complete binary tree that can be embedded below that node.


...
Wikipedia

...