*** Welcome to piglix ***

Stone's representation theorem for Boolean algebras


In mathematics, Stone's representation theorem for Boolean algebras states that every Boolean algebra is isomorphic to a certain field of sets. The theorem is fundamental to the deeper understanding of Boolean algebra that emerged in the first half of the 20th century. The theorem was first proved by Marshall H. Stone (1936). Stone was led to it by his study of the spectral theory of operators on a Hilbert space.

Each Boolean algebra B has an associated topological space, denoted here S(B), called its Stone space. The points in S(B) are the ultrafilters on B, or equivalently the homomorphisms from B to the two-element Boolean algebra. The topology on S(B) is generated by a (closed) basis consisting of all sets of the form

where b is an element of B. This is the topology of pointwise convergence of nets of homomorphisms into the two-element Boolean algebra.

For every Boolean algebra B, S(B) is a compact totally disconnected Hausdorff space; such spaces are called Stone spaces (also profinite spaces). Conversely, given any topological space X, the collection of subsets of X that are clopen (both closed and open) is a Boolean algebra.

A simple version of Stone's representation theorem states that every Boolean algebra B is isomorphic to the algebra of clopen subsets of its Stone space S(B). The isomorphism sends an element bB to the set of all ultrafilters that contain b. This is a clopen set because of the choice of topology on S(B) and because B is a Boolean algebra.


...
Wikipedia

...