Stigmergy is a consensus mechanism of indirect , through the environment, between agents or actions. The principle is that the trace left in the environment by an action stimulates the performance of a next action, by the same or a different agent. In that way, subsequent actions tend to reinforce and build on each other, leading to the spontaneous emergence of coherent, apparently systematic activity.
Stigmergy is a form of self-organization. It produces complex, seemingly intelligent structures, without need for any planning, control, or even direct communication between the agents. As such it supports efficient collaboration between extremely simple agents, who lack any memory, intelligence or even individual awareness of each other.
The term "stigmergy" was introduced by French biologist Pierre-Paul Grassé in 1959 to refer to termite behavior. He defined it as: "Stimulation of workers by the performance they have achieved." It is derived from the Greek words stigma "mark, sign" and ergon "work, action", and captures the notion that an agent’s actions leave signs in the environment, signs that it and other agents sense and that determine and incite their subsequent actions.
Later on, a distinction was made between the stigmergic phenomenon, which is specific to the guidance of additional work, and the more general, non-work specific incitation, for which the term sematectonic communication was coined by E. O. Wilson, from the Greek words sema "sign, token", and tecton "craftsman, builder": "There is a need for a more general, somewhat less clumsy expression to denote the evocation of any form of behavior or physiological change by the evidences of work performed by other animals, including the special case of the guidance of additional work."
Stigmergy is now one of the key concepts in the field of swarm intelligence.
Stigmergy was first observed in social insects. For example, ants exchange information by laying down pheromones (the trace) on their way back to the nest when they have found food. In that way, they collectively develop a complex network of trails, connecting the nest in the most efficient way to the different food sources. When ants come out of the nest searching for food, they are stimulated by the pheromone to follow the trail towards the food source. The network of trails functions as a shared external memory for the ant colony.