*** Welcome to piglix ***

Stickelberger theorem


In mathematics, Stickelberger's theorem is a result of algebraic number theory, which gives some information about the Galois module structure of class groups of cyclotomic fields. A special case was first proven by Ernst Kummer (1847) while the general result is due to Ludwig Stickelberger (1890).

Let Km denote the mth cyclotomic field, i.e. the extension of the rational numbers obtained by adjoining the mth roots of unity to (where m ≥ 2 is an integer). It is a Galois extension of with Galois group Gm isomorphic to the multiplicative group of integers modulo m (/m)×. The Stickelberger element (of level m or of Km) is an element in the group ring [Gm] and the Stickelberger ideal (of level m or of Km) is an ideal in the group ring [Gm]. They are defined as follows. Let ζm denote a primitive mth root of unity. The isomorphism from (/m)× to Gm is given by sending a to σa defined by the relation


...
Wikipedia

...