Steradian | |
---|---|
A graphical representation of 1 steradian.
The sphere has radius r, and in this case the area A of the highlighted surface patch is r2. The solid angle Ω equals A sr/r2 which is 1 sr in this example. The entire sphere has a solid angle of 4πsr.
|
|
Unit system | SI derived unit |
Unit of | Solid angle |
Symbol | ㏛ |
The steradian (symbol: sr) or square radian is the SI unit of solid angle. It is used in three-dimensional geometry, and is analogous to the radian which quantifies planar angles. The name is derived from the Greek stereos for "solid" and the Latin radius for "ray, beam".
The steradian, like the radian, is a dimensionless unit, essentially because a solid angle is the ratio between the area subtended and the square of its distance from the vertex: both the numerator and denominator of this ratio have dimension length squared (i.e. L2/L2 = 1, dimensionless). It is useful, however, to distinguish between dimensionless quantities of a different nature, so the symbol "sr" is used to indicate a solid angle. For example, radiant intensity can be measured in watts per steradian (W·sr−1). The steradian was formerly an SI supplementary unit, but this category was abolished in 1995 and the steradian is now considered an SI derived unit.
A steradian can be defined as the solid angle subtended at the center of a unit sphere by a unit area on its surface. For a general sphere of radius r, any portion of its surface with area A = r2 subtends one steradian.
The solid angle is related to the area it cuts out of a sphere:
Because the surface area A of a sphere is 4πr2, the definition implies that a sphere measures 4π (≈ 12.56637) steradians. By the same argument, the maximum solid angle that can be subtended at any point is 4π sr.
Since A = r2, it corresponds to the area of a spherical cap (A = 2πrh) (wherein h stands for the "height" of the cap), and the relationship h/r = 1/2π holds. Therefore one steradian corresponds to the plane (i.e. radian) angle of the cross-section of a simple cone subtending the plane angle 2θ, with θ given by: