A steel dam is a type of dam (a structure to impound or retard the flow of water) that is made of steel, rather than the more common masonry, earthworks, concrete or timber construction materials.
Relatively few examples were ever built. Of the three built in the US, two remain, the Ashfork-Bainbridge Steel Dam, built in 1898 in the Arizona desert to supply locomotive water to the Atchison, Topeka and Santa Fe Railway (ATSF), and the Redridge Steel Dam, built 1901, in the Upper Peninsula of Michigan to supply water to stamp mills. The third, the Hauser Lake Dam in Montana, was finished in 1907 but failed in 1908.
Steel dams were found uneconomical after the World War I as the steel prices raised many times compared to cement prices though they are equally sound like other dam building materials. However, their economics are highly favourable in 21st century due to higher onsite labour costs, costly bulk material transportation, availability of more construction time in a year, flexibility in construction plan complying statuary requirements, etc.
Steel dams use a series of footings anchored in the earth. These footings hold struts which in turn hold up a series of deck girders which in turn hold steel plates. It is these plates that the water comes in contact with. The girders and plates are angled in the downstream direction so that part of the weight of the water acts with a downward force on the struts and footings, holding them in place. (Consider that, if the plates were vertical, as in a steel cofferdam, all the force would be horizontal and much more massive struts and anchors would be required to counteract the horizontal force and bending moment.)
In the direct strutted version, shown in the illustration at left, all the struts are parallel. There is thus no tensile force in the plate girders.
In the cantilever strutted version, shown in the illustration at left, the top strut (or struts, depending on design) can be fashioned into a cantilever truss. By all going to the same footing, the upper part of the deck girders are thus in tension and the moment of the cantilever section is offset by the moment of the water impinging on that section.