Steam generators are heat exchangers used to convert water into steam from heat produced in a nuclear reactor core. They are used in pressurized water reactors (PWR) between the primary and secondary coolant loops.
In other types of reactors, such as the pressurised heavy water reactors of the CANDU design, the primary fluid is heavy water. Liquid metal cooled reactors such as the Russian BN-600 reactor also use heat exchangers between primary metal coolant and at the secondary water coolant.
Boiling water reactors (BWR) do not use steam generators, as turbine steam is produced directly in the reactor core. Activation of oxygen and dissolved nitrogen in the water means that the turbine hall is inaccessible during reactor operation and for some time afterwards.
In commercial power plants, there are two to four steam generators per reactor; each steam generator can measure up to 70 feet (21 m) in height and weigh as much as 800 tons. Each steam generator can contain anywhere from 3,000 to 16,000 tubes, each about .75 inches (19 mm) in diameter. The coolant (treated water), which is maintained at high pressure to prevent boiling, is pumped through the nuclear reactor core. Heat transfer takes place between the reactor core and the circulating water and the coolant is then pumped through the primary tube side of the steam generator by coolant pumps before returning to the reactor core. This is referred to as the primary loop.
That water flowing through the steam generator boils water on the shell side (which is kept at a lower pressure than the primary side) to produce steam. This is referred to as the secondary loop. The secondary-side steam is delivered to the turbines to make electricity. The steam is subsequently condensed via cooled water from a tertiary loop and returned to the steam generator to be heated once again. The tertiary cooling water may be recirculated to cooling towers where it sheds waste heat before returning to condense more steam. Once-through tertiary cooling may otherwise be provided by a river, lake, or ocean. This primary, secondary, tertiary cooling scheme is the basis of the pressurized water reactor, which is the most common way to extract usable energy from a controlled nuclear reaction.