Statistical shape analysis is an analysis of the geometrical properties of some given set of shapes by statistical methods. For instance, it could be used to quantify differences between male and female Gorilla skull shapes, normal and pathological bone shapes, leaf outlines with and without herbivory by insects, etc. Important aspects of shape analysis are to obtain a measure of distance between shapes, to estimate mean shapes from (possibly random) samples, to estimate shape variability within samples, to perform clustering and to test for differences between shapes. One of the main methods used is principal component analysis (PCA). Statistical shape analysis has applications in various fields, including medical imaging, computer vision, computational anatomy, sensor measurement, and geographical profiling.
In the point distribution model, a shape is determined by a finite set of coordinate points, known as landmark points. These landmark points often correspond to important identifiable features such as the corners of the eyes. Once the points are collected some form of registration is undertaken. This can be a baseline methods used by Fred Bookstein for geometric morphometrics in anthropology. Or an approach like Procrustes analysis which finds an average shape.
David George Kendall investigated the statistical distribution of the shape of triangles, and represented each triangle by a point on a sphere. He used this distribution on the sphere to investigate ley lines and whether three stones were more likely to be co-linear than might be expected. Statistical distribution like the Kent distribution can be used to analyse the distribution of such spaces.