*** Welcome to piglix ***

Station-to-Shuttle Power Transfer System


The electrical system of the International Space Station is a critical resource for the International Space Station (ISS) because it allows the crew to live comfortably, to safely operate the station, and to perform scientific experiments. The ISS electrical system uses solar cells to directly convert sunlight to electricity. Large numbers of cells are assembled in arrays to produce high power levels. This method of harnessing solar power is called photovoltaics.

The process of collecting sunlight, converting it to electricity, and managing and distributing this electricity builds up excess heat that can damage spacecraft equipment. This heat must be eliminated for reliable operation of the space station in orbit. The ISS power system uses radiators to dissipate the heat away from the spacecraft. The radiators are shaded from sunlight and aligned toward the cold void of deep space.

Each ISS solar array wing (often abbreviated "SAW") consists of two retractable "blankets" of solar cells with a mast between them. Each wing uses nearly 33,000 solar cells and when fully extended is 35 metres (115 ft) in length and 12 metres (39 ft) wide. When retracted, each wing folds into a solar array blanket box just 51 centimetres (20 in) high and 4.57 metres (15.0 ft) in length. The ISS now has the full complement of eight solar array wings. Altogether, the arrays can generate 84 to 120 kilowatts.

The solar arrays normally track the Sun, with the "alpha gimbal" used as the primary rotation to follow the Sun as the space station moves around the Earth, and the "beta gimbal" used to adjust for the angle of the space station's orbit to the ecliptic. Several different tracking modes are used in operations, ranging from full Sun-tracking, to the drag-reduction mode ("Night glider" and "Sun slicer" modes), to a drag-maximization mode used to lower the altitude. See more details in the article at Night Glider mode.

Since the station is often not in direct sunlight, it relies on rechargeable nickel-hydrogen batteries to provide continuous power during the "eclipse" part of the orbit (35 minutes of every 90 minute orbit). The batteries ensure that the station is never without power to sustain life-support systems and experiments. During the sunlit part of the orbit, the batteries are recharged. The nickel-hydrogen batteries have a design life of 6.5 years which means that they must be replaced multiple times during the expected 20-year life of the station. The batteries and the battery charge/discharge units are manufactured by Space Systems/Loral (SS/L), under contract to Boeing. N-H2 batteries on the P6 truss were replaced in 2009 and 2010 with more N-H batteires brought by Space Shuttle missions. There are batteries in Trusses P6, S6, S6, and S4.


...
Wikipedia

...