Static program analysis is the analysis of computer software that is performed without actually executing programs (analysis performed on executing programs is known as dynamic analysis). In most cases the analysis is performed on some version of the source code, and in the other cases, some form of the object code.
The term is usually applied to the analysis performed by an automated tool, with human analysis being called program understanding, program comprehension, or code review. Software inspections and software walkthroughs are also used in the latter case.
The sophistication of the analysis performed by tools varies from those that only consider the behaviour of individual statements and declarations, to those that include the complete source code of a program in their analysis. The uses of the information obtained from the analysis vary from highlighting possible coding errors (e.g., the lint tool) to formal methods that mathematically prove properties about a given program (e.g., its behaviour matches that of its specification).
Software metrics and reverse engineering can be described as forms of static analysis. Deriving software metrics and static analysis are increasingly deployed together, especially in creation of embedded systems, by defining so-called software quality objectives.
A growing commercial use of static analysis is in the verification of properties of software used in safety-critical computer systems and locating potentially vulnerable code. For example, the following industries have identified the use of static code analysis as a means of improving the quality of increasingly sophisticated and complex software: