*** Welcome to piglix ***

Starburst galaxies


A starburst galaxy is a galaxy undergoing an exceptionally high rate of star formation, as compared to the long-term average rate of star formation in the galaxy or the star formation rate observed in most other galaxies. In a starburst galaxy, the rate of star formation is so large that the galaxy will consume all of its gas reservoir, from which the stars are forming, on a timescale much shorter than the age of the galaxy. As such, the starburst nature of a galaxy is a phase, and one that typically occupies a brief period of a galaxy's evolution. The majority of starburst galaxies are in the midst of a merger or close encounter with another galaxy. Starburst galaxies include M82, NGC 4038/NGC 4039 (the Antennae Galaxies), and IC 10.

Starburst galaxies are defined by these three interrelated factors:

Commonly used definitions include:

Starburst galaxies feature a large amount of cool molecular gas in a small volume. Galaxies in the midst of a starburst also frequently show tidal tails, an indication of a close encounter with another galaxy, or are in the midst of a merger. Interactions between galaxies that do not merge can trigger unstable rotation modes, such as the bar instability, which causes gas to be funneled towards the nucleus and ignites bursts of star formation near the galactic nucleus.

Classifying types of starburst galaxies is difficult since starburst galaxies do not represent a specific type in and of themselves. Starbursts can occur in disk galaxies, and irregular galaxies often exhibit knots of starburst spread throughout the irregular galaxy. Nevertheless, astronomers typically classify starburst galaxies based on their most distinct observational characteristics. Some of the categorizations include:

Firstly, a starburst galaxy must have a large supply of gas available to form stars. The burst itself may be triggered by a close encounter with another galaxy (such as M81/M82), a collision with another galaxy (such as the Antennae), or by another process which forces material into the centre of the galaxy (such as a stellar bar).

The inside of the starburst is quite an extreme environment. The large amounts of gas mean that very massive stars are formed. Young, hot stars ionize the gas (mainly hydrogen) around them, creating H II regions. Groups of very hot stars are known as OB associations. These stars burn very bright and very fast, and are quite likely to explode at the end of their lives as supernovae.


...
Wikipedia

...