StarTram is a proposal for a maglev space launch system. The initial Generation 1 facility would be cargo only, launching from a mountain peak at an altitude of 3 to 7 kilometres (1.9 to 4.3 mi) with an evacuated tube staying at local surface level; it has been claimed that about 150,000 tons could be lifted to orbit annually. More advanced technology would be required for the Generation 2 system for passengers, with a longer track instead gradually curving up at its end to the thinner air at 22 kilometres (14 mi) altitude, supported by magnetic levitation, reducing g-forces when each capsule transitions from the vacuum tube to the atmosphere. A SPESIF 2010 presentation stated that Gen-1 could be completed by the year 2020+ if funding began in 2010, Gen-2 by 2030+.
James R. Powell invented the superconducting maglev concept in the 1960s with a colleague, Gordon Danby, also at Brookhaven National Laboratory, which was subsequently developed into modern maglev trains. Later, Powell co-founded StarTram, Inc. with Dr. George Maise, an aerospace engineer who previously was at Brookhaven National Laboratory from 1974 to 1997 with particular expertise including reentry heating and hypersonic vehicle design.
A StarTram design was first published in a 2001 paper and patent, making reference to a 1994 paper on MagLifter. Developed by John C. Mankins, who was manager of Advanced Concept Studies at NASA, the MagLifter concept involved maglev launch assist for a few hundred m/s with a short track, 90% projected efficiency. Noting StarTram is essentially MagLifter taken to a much greater extreme, both MagLifter and StarTram were discussed the following year in a concept study performed by ZHA for NASA's Kennedy Space Center, also considered together by Maglev 2000 with Powell and Danby.