*** Welcome to piglix ***

Standard electrode potential


In electrochemistry, the standard electrode potential, abbreviated E° or E (with a superscript plimsoll character, pronounced "standard" or "nought"), is the measure of individual potential of a reversible electrode at standard state, which is with solutes at an effective concentration of 1 mol dm−3, and gases at a pressure of 1 atm. The reduction potential is an intensive property. The values are most often tabulated at 25 °C. The basis for an electrochemical cell such as the galvanic cell is always a redox reaction which can be broken down into two half-reactions: oxidation at anode (loss of electron) and reduction at cathode (gain of electron). Electricity is generated due to electric potential difference between two electrodes. This potential difference is created as a result of the difference between individual potentials of the two metal electrodes with respect to the electrolyte. (Reversible electrode is an electrode that owes its potential to changes of a reversible nature, in contrast to electrodes used in electroplating which are destroyed during their use.)

Although the overall potential of a cell can be measured, there is no simple way to accurately measure the electrode/electrolyte potentials in isolation. The electric potential also varies with temperature, concentration and pressure. Since the oxidation potential of a half-reaction is the negative of the reduction potential in a redox reaction, it is sufficient to calculate either one of the potentials. Therefore, standard electrode potential is commonly written as standard reduction potential.


...
Wikipedia

...