*** Welcome to piglix ***

Staging (rocketry)


A multistage (or multi-stage) rocket is a rocket that uses two or more stages, each of which contains its own engines and propellant. A tandem or serial stage is mounted on top of another stage; a parallel stage is attached alongside another stage. The result is effectively two or more rockets stacked on top of or attached next to each other. Taken together these are sometimes called a launch vehicle. Two-stage rockets are quite common, but rockets with as many as five separate stages have been successfully launched. By jettisoning stages when they run out of propellant, the mass of the remaining rocket is decreased. This staging allows the thrust of the remaining stages to more easily accelerate the rocket to its final speed and height.

In serial or tandem staging schemes, the first stage is at the bottom and is usually the largest, the second stage and subsequent upper stages are above it, usually decreasing in size. In parallel staging schemes solid or liquid rocket boosters are used to assist with lift-off. These are sometimes referred to as "stage 0". In the typical case, the first-stage and booster engines fire to propel the entire rocket upwards. When the boosters run out of fuel, they are detached from the rest of the rocket (usually with some kind of small explosive charge) and fall away. The first stage then burns to completion and falls off. This leaves a smaller rocket, with the second stage on the bottom, which then fires. Known in rocketry circles as staging, this process is repeated until the final stage's motor burns to completion. In some cases with serial staging, the upper stage ignites before the separation- the interstage ring is designed with this in mind, and the thrust is used to help positively separate the two vehicles.

The main reason for multi-stage rockets and boosters is that once the fuel is exhausted, the space and structure which contained it and the motors themselves are useless and only add weight to the vehicle which slows down its future acceleration. By dropping the stages which are no longer useful to the mission, the rocket lightens itself. The thrust of future stages is able to provide more acceleration than if the earlier stage were still attached, or a single, large rocket would be capable of. When a stage drops off, the rest of the rocket is still traveling near the speed that the whole assembly reached at burn-out time. This means that it needs less total fuel to reach a given velocity and/or altitude.


...
Wikipedia

...