Square cupola | |
---|---|
Type |
Johnson J3 - J4 - J5 |
Faces | 4 triangles 1+4 squares 1 octagon |
Edges | 20 |
Vertices | 12 |
Vertex configuration | 8(3.4.8) 4(3.43) |
Symmetry group | C4v, [4], (*44) |
Rotation group | C4, [4]+, (44) |
Dual polyhedron | - |
Properties | convex |
Net | |
In geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids (J4). It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagon.
A Johnson solid is one of 92 strictly convex polyhedra that have regular faces but are not uniform (that is, they are not Platonic solids, Archimedean solids, prisms or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.
The following formulae for volume, surface area, and circumradius can be used if all faces are regular, with edge length a: