In differential geometry, a spray is a vector field H on the tangent bundle TM that encodes a quasilinear second order system of ordinary differential equations on the base manifold M. Usually a spray is required to be homogeneous in the sense that its integral curves t→ΦHt(ξ)∈TM obey the rule ΦHt(λξ)=ΦHλt(ξ) in positive reparameterizations. If this requirement is dropped, H is called a semispray.
Sprays arise naturally in Riemannian and Finsler geometry as the geodesic sprays, whose integral curves are precisely the tangent curves of locally length minimizing curves. Semisprays arise naturally as the extremal curves of action integrals in Lagrangian mechanics. Generalizing all these examples, any (possibly nonlinear) connection on M induces a semispray H, and conversely, any semispray H induces a torsion-free nonlinear connection on M. If the original connection is torsion-free it coincides with the connection induced by H, and homogeneous torsion-free connections are in one-to-one correspondence with full sprays.
Let M be a differentiable manifold and (TM,πTM,M) its tangent bundle. Then a vector field H on TM (that is, a section of the double tangent bundle TTM) is a semispray on M, if any of the three following equivalent conditions holds:
A semispray H on M is a (full) spray if any of the following equivalent conditions hold:
Let (xi,ξi) be the local coordinates on TM associated with the local coordinates (xi) on M using the coordinate basis on each tangent space. Then H is a semispray on M if and only if it has a local representation of the form