*** Welcome to piglix ***

Splitting of prime ideals in a Galois extension


In mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of algebraic number theory. The splitting of prime ideals in Galois extensions is sometimes attributed to David Hilbert by calling it Hilbert theory. There is a geometric analogue, for ramified coverings of Riemann surfaces, which is simpler in that only one kind of subgroup of G need be considered, rather than two. This was certainly familiar before Hilbert.

Let L/K be a finite extension of number fields, and let OK and OL be the corresponding ring of integers of K and L, respectively, which are defined to be the integral closure of the integers Z in the field in question.

Finally, let p be a non-zero prime ideal in OK, or equivalently, a maximal ideal, so that the residue OK/p is a field.

From the basic theory of one-dimensional rings follows the existence of a unique decomposition

of the ideal pOL generated in OL by p into a product of distinct maximal ideals Pj, with multiplicities ej.

The field F = OK/p naturally embeds into Fj = OL/Pj for every j, the degree fj = [OL/Pj : OK/p] of this residue field extension is called inertia degree of Pj over p.


...
Wikipedia

...