In magnetic resonance, a spin echo is the refocusing of spin magnetisation by a pulse of resonant electromagnetic radiation. Modern nuclear magnetic resonance (NMR) and magnetic resonance imaging make use of this effect.
The NMR signal observed following an initial excitation pulse decays with time due to both spin relaxation and any inhomogeneous effects which cause different spins in the sample to precess at different rates. The first of these, relaxation, leads to an irreversible loss of magnetisation. However, the inhomogeneous dephasing can be removed by applying a 180° inversion pulse that inverts the magnetisation vectors. Examples of inhomogeneous effects include a magnetic field gradient and a distribution of chemical shifts. If the inversion pulse is applied after a period t of dephasing, the inhomogeneous evolution will rephase to form an echo at time 2t. In simple cases, the intensity of the echo relative to the initial signal is given by e−2t/T2 where T2 is the time constant for spin-spin relaxation.
Echo phenomena are important features of coherent spectroscopy which have been used in fields other than magnetic resonance including laser spectroscopy and neutron scattering. Echoes were first detected in nuclear magnetic resonance by Erwin Hahn in 1950 , and spin echoes are sometimes referred to as Hahn echoes. In nuclear magnetic resonance and magnetic resonance imaging, radiofrequency radiation is most commonly used.
In 1972 F. Mezei introduced spin echo neutron scattering, a technique that can be used to study magnons and phonons in single crystals. The technique is now applied in research facilities using triple axis spectrometers.