Sphingolipids, or glycosylceramides, are a class of lipids containing a backbone of sphingoid bases, a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological Sphinx because of their enigmatic nature. These compounds play important roles in signal transmission and cell recognition. Sphingolipidoses, or disorders of sphingolipid metabolism, have particular impact on neural tissue. A sphingolipid with an R group consisting of a hydrogen atom only is a ceramide. Other common R groups include phosphocholine, yielding a sphingomyelin, and various sugar monomers or dimers, yielding cerebrosides and globosides, respectively. Cerebrosides and globosides are collectively known as glycosphingolipids.
The long-chain bases, sometimes simply known as sphingoid bases, are the first non-transient products of de novo sphingolipid synthesis in both yeast and mammals. These compounds, specifically known as phytosphingosine and dihydrosphingosine (also known as sphinganine, although this term is less common), are mainly C18 compounds, with somewhat lower levels of C20 bases. Ceramides and glycosphingolipids are N-acyl derivatives of these compounds.
The sphingosine backbone is O-linked to a (usually) charged head group such as ethanolamine, serine, or choline.
The backbone is also amide-linked to an acyl group, such as a fatty acid.
Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways.