Clinical data | |
---|---|
AHFS/Drugs.com | Micromedex Detailed Consumer Information |
MedlinePlus | a600002 |
Pregnancy category |
|
Routes of administration |
Oral |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | 92% |
Protein binding | 45% |
Metabolism |
Hepatic glucuronidation system not involved |
Biological half-life | 16 to 30 hours |
Excretion | Fecal (50%) and renal (50%) |
Identifiers | |
|
|
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
ECHA InfoCard | 100.157.238 |
Chemical and physical data | |
Formula | C19H22F2N4O3 |
Molar mass | 392.41 g/mol |
3D model (Jmol) | |
|
|
|
|
Sparfloxacin (spar FLOX a sin), trade names Spacin in Bangladesh, Zagam and Zagam Respipac, is a fluoroquinolone antibiotic used in the treatment of bacterial infections. It has a controversial safety profile. Zagam is no longer available in the United States.
Sparfloxacin is about 37-45% bound to proteins in the blood.
Shimada et al. ( 1993) has summarized many of the studies published in Japanese regarding the tissue distribution of sparfloxacin. (high concentrations are achieved in sputum, pleural fluid, skin, lung, prostate, gynecological tissues, breast milk and otolaryngological tissues. *Salivary concentrations are 66-70% of plasma levels, while CSF penetration appears to be somewhat limited with CSF:plasma concentration ratios of only 0.25-0.35.
In rabbits, sparfloxacin achieves very good penetration into the ocular vitreous (54%), cornea (76%) and lens (36%).
The compound is indicated for treating community-acquired lower respiratory tract infections (acute sinusitis, exacerbations of chronic bronchitis caused by susceptible bacteria, community-acquired pneumonia).
Sparfloxacin, like other quinolones and fluoroquinolones, are bactericidal drugs, actively killing bacteria. Quinolones inhibit the bacterial DNA gyrase or the topoisomerase IV enzyme, thereby inhibiting DNA replication and transcription. Quinolones can enter cells easily and therefore are often used to treat intracellular pathogens such as Legionella pneumophila and Mycoplasma pneumoniae. For many gram-negative bacteria DNA gyrase is the target, whereas topoisomerase IV is the target for many gram-positive bacteria. Eukaryotic cells do not contain DNA gyrase or topoisomerase IV.