*** Welcome to piglix ***

Spacecraft design


The design of spacecraft covers a broad area, including the design of both robotic spacecraft (satellites and planetary probes), and spacecraft for human spaceflight (spaceships and space stations).

Spacecraft design was born as a discipline in the 50s and 60s with the advent of American and Russian space exploration programs. Since then it has progressed, although typically less than comparable terrestrial technologies. This is for a large part due to the challenging space environment, but also to the lack of basic R&D, and to other cultural factors within the design community. On the other hand, another reason for slow space travel application design is the high energy cost, and low efficiency, for achieving orbit. This cost might be seen as too high a "start-up-cost."

Spacecraft design brings together aspects of various disciplines, namely:

The spacecraft bus carries the payload. Its subsystems support the payload and helps in pointing the payload correctly. It puts the payload in the right orbit and keeps it there. It provides housekeeping functions. It also provides orbit and attitude maintenance, electric power, command, telemetry and data handling, structure and rigidity, temperature control, data storage and communication, if required. The payload and spacecraft bus may be different units or it may be a combined one. The booster adapter provides the load-carrying interface with the vehicle (payload and spacecraft bus together).

The spacecraft may also have a propellant load, which is used to drive or push the vehicle upwards, and a propulsion kick stage. The propellant commonly used is a compressed gas like nitrogen, liquid such as monopropellant hydrazine or solid fuel, which is used for velocity corrections and attitude control. In a kick stage (also called apogee boost motor, propulsion module, or integral propulsion stage) a separate rocket motor is used to send the spacecraft into its mission orbit. While designing a spacecraft, the orbit which is going to be used should be considered into the point as it affects attitude control, thermal design, and the electric power subsystem. But these effects are secondary as compared to the effect caused on the payload due to the orbit. Thus while designing the mission; the designer selects such an orbit which increases the payload performance. The designer even calculates the required spacecraft performance characteristics such as pointing, thermal control, power quantity, and duty cycle. The spacecraft is then made, which satisfies all the requirements.


...
Wikipedia

...