The Space Shuttle thermal protection system (TPS) is the barrier that protected the Space Shuttle Orbiter during the searing 1,650 °C (3,000 °F) heat of atmospheric reentry. A secondary goal was to protect from the heat and cold of space while in orbit.
The TPS covered essentially the entire orbiter surface, and consisted of seven different materials in varying locations based on amount of required heat protection:
Each type of TPS had specific heat protection, impact resistance, and weight characteristics, which determined the locations where it was used and the amount used.
The shuttle TPS has three key characteristics that distinguish it from the TPS used on previous spacecraft:
The orbiter's aluminum structure could not withstand temperatures over 175 °C (347 °F) without structural failure. Aerodynamic heating during reentry would push the temperature well above this level in areas, so an effective insulator was needed.
Reentry heating differs from the normal atmospheric heating associated with jet aircraft, and this governed TPS design and characteristics. The skin of high-speed jet aircraft can also become hot, but this is from frictional heating due to atmospheric friction, similar to warming one's hands by rubbing them together. The orbiter reentered the atmosphere as a blunt body by having a very high (40-degree) angle of attack, with its broad lower surface facing the direction of flight. Over 80% of the heating the orbiter experiences during reentry is caused by compression of the air ahead of the hypersonic vehicle, in accordance with the basic thermodynamic relation between pressure and temperature. A hot shock wave was created in front of the vehicle, which deflected most of the heat and prevented the orbiter's surface from directly contacting the peak heat. Therefore reentry heating was largely convective heat transfer between the shock wave and the orbiter's skin through superheated plasma. The key to a reusable shield against this type of heating is very low-density material, similar to how a thermos bottle inhibits convective heat transfer.