*** Welcome to piglix ***

Source-sink dynamics


Source–sink dynamics is a theoretical model used by ecologists to describe how variation in habitat quality may affect the population growth or decline of organisms.

Since quality is likely to vary among patches of habitat, it is important to consider how a low quality patch might affect a population. In this model, organisms occupy two patches of habitat. One patch, the source, is a high quality habitat that on average allows the population to increase. The second patch, the sink, is very low quality habitat that, on its own, would not be able to support a population. However, if the excess of individuals produced in the source frequently moves to the sink, the sink population can persist indefinitely. Organisms are generally assumed to be able to distinguish between high and low quality habitat, and to prefer high quality habitat. However, ecological trap theory describes the reasons why organisms may actually prefer sink patches over source patches. Finally, the source-sink model implies that some habitat patches may be more important to the long-term survival of the population, and considering the presence of source-sink dynamics will help inform conservation decisions.

Although the seeds of a source-sink model had been planted earlier, Pulliam is often recognized as the first to present a fully developed source-sink model. He defined source and sink patches in terms of their demographic parameters, or BIDE rates (birth, immigration, death, and emigration rates). In the source patch, birth rates were greater than death rates, causing the population to grow. The excess individuals were expected to leave the patch, so that emigration rates were greater than immigration rates. In other words, sources were a net exporter of individuals. In contrast, in a sink patch, death rates were greater than birth rates, resulting in a population decline toward extinction unless enough individuals emigrated from the source patch. Immigration rates were expected to be greater than emigration rates, so that sinks were a net importer of individuals. As a result, there would be a net flow of individuals from the source to the sink (see Table 1).


...
Wikipedia

...