*** Welcome to piglix ***

Sound quality


Sound quality is typically an assessment of the accuracy, enjoyability, or intelligibility of audio output from an electronic device. Quality can be measured objectively, such as when tools are used to gauge the accuracy with which the device reproduces an original sound; or it can be measured subjectively, such as when human listeners respond to the sound or gauge its perceived similarity to another sound.

The sound quality of a reproduction or recording depends on a number of factors, including the equipment used to make it, processing and mastering done to the recording, the equipment used to reproduce it, as well as the listening environment used to reproduce it. In some cases, processing such as equalization, dynamic range compression or stereo processing may be applied to a recording to create audio that is significantly different from the original but may be perceived as more agreeable to a listener. In other cases, the goal may be to reproduce audio as closely as possible to the original.

When applied to specific electronic devices, such as loudspeakers, microphones, amplifiers or headphones sound quality usually refers to accuracy, with higher quality devices providing higher accuracy reproduction. When applied to processing steps such as mastering recordings, absolute accuracy may be secondary to artistic or aesthetic concerns. In still other situations, such as recording a live musical performance, audio quality may refer to proper placement of microphones around a room to optimally use room acoustics.

Digital audio is stored in many formats. The simplest form is uncompressed PCM, where audio is stored as a series of quantized audio samples spaced at regular intervals in time. As samples are placed closer together in time, higher frequencies can be reproduced. According to the sampling theorem, any bandwidth-limited signal (that does not contain a pure sinusoidal component), bandwidth B, can be perfectly described by more than 2B samples per second, allowing perfect reconstruction of the bandwidth-limited analog signal. For example, for human hearing bandwidth between 0 and 20 kHz, audio must be sampled at above 40 kHz. Due to the need for filtering out ultrasonic frequencies resulting from the conversion to an analog signal, in practice slightly higher sample rates are used: 44.1 kHz (CD audio) or 48 kHz (DVD).


...
Wikipedia

...