In topology, the Sorgenfrey plane is a frequently-cited counterexample to many otherwise plausible-sounding conjectures. It consists of the product of two copies of the Sorgenfrey line, which is the real line under the half-open interval topology. The Sorgenfrey line and plane are named for the American mathematician Robert Sorgenfrey.
A basis for the Sorgenfrey plane, denoted from now on, is therefore the set of rectangles that include the west edge, southwest corner, and south edge, and omit the southeast corner, east edge, northeast corner, north edge, and northwest corner. Open sets in are unions of such rectangles.