The Solow–Swan model is an exogenous growth model, an economic model of long-run economic growth set within the framework of neoclassical economics. It attempts to explain long-run economic growth by looking at capital accumulation, labor or population growth, and increases in productivity, commonly referred to as technological progress. At its core it is a neoclassical aggregate production function, usually of a Cobb–Douglas type, which enables the model "to make contact with microeconomics". The model was developed independently by Robert Solow and Trevor Swan in 1956, and superseded the post-Keynesian Harrod–Domar model. Due to its particularly attractive mathematical characteristics, Solow–Swan proved to be a convenient starting point for various extensions. For instance, in 1965, David Cass and Tjalling Koopmans integrated Frank Ramsey's analysis of consumer optimization, thereby endogenizing the savings rate—see the Ramsey–Cass–Koopmans model.
The neo-classical model was an extension to the 1946 Harrod–Domar model that included a new term: productivity growth. Important contributions to the model came from the work done by Solow and by Swan in 1956, who independently developed relatively simple growth models. Solow's model fitted available data on US economic growth with some success. In 1987 Solow was awarded the Nobel Prize in Economics for his work. Today, economists use Solow's sources-of-growth accounting to estimate the separate effects on economic growth of technological change, capital, and labor.