*** Welcome to piglix ***

Solid State Interlocking


Solid State Interlocking (SSI) is the brand name of the first generation processor-based interlocking developed in the 1980s by British Rail's Research Division, GEC-General Signal and Westinghouse Signals Ltd in the UK.

SSI utilises a 2-out-of-3 redundancy architecture, whereby all safety-critical functions are performed in three separate processing lanes and the results voted upon. An SSI interlocking cubicle comprises three Interlocking Processors or Multi Processor Modules (MPMs), two Panel Processors and a Diagnostics Processor (DMPM). An SSI system can operate on two MPMs in the event of the failure of one. It does not need the DMPM to function as an interlocking, as this drives the technician's terminal only.

Geographic interlocking data, relating to the area of railway under control, is installed using EPROMs contained in plug in memory modules. The interlocking program contained in each of the MPMs interprets this data to allow safe passage of trains through its area of control.

Trackside equipment such as signals and points are connected to nearby 'trackside functional modules' (TFMs). Each module has a number of outputs and inputs. Each output drives an individual function, such as a signal lamp or an AWS inductor. Certain outputs are capable of driving a flashing lamp directly. The inputs are used to send information back to the interlocking, such as indications determined by track circuit relays or points detection circuits, for example.

There are two kinds of TFM; the signal module (identified by a red label) and the points module (black label). A maximum of 63 TFMs may be addressed by one SSI interlocking; in practice the number will be limited by timing issues and the need to allow for future expansion.

Communication between interlockings and TFMs is by electronic data packages termed 'telegrams'. Telegrams are transmitted via 'data links', comprising twisted pair copper cable. The data links are duplicated for availability.


...
Wikipedia

...