*** Welcome to piglix ***

Solar panels on spacecraft


Spacecraft operating in the inner Solar System usually rely on the use of photovoltaic solar panels to derive electricity from sunlight. In the outer solar system, where the sunlight is too weak to produce sufficient power, radioisotope thermoelectric generators (RTGs) are used as a power source.

The first spacecraft to use solar panels was the Vanguard 1 satellite, launched by the US in 1958. This was largely because of the influence of Dr. Hans Ziegler, who can be regarded as the father of spacecraft solar power.

Solar panels on spacecraft supply power for two main uses:

For both uses, a key figure of merit of the solar panels is the specific power (watts generated divided by solar array mass), which indicates on a relative basis how much power one array will generate for a given launch mass relative to another. Another key metric is stowed packing efficiency (deployed watts produced divided by stowed volume), which indicates how easily the array will fit into a launch vehicle. Yet another key metric is cost (dollars per watt).

To increase the specific power, typical solar panels on spacecraft use close-packed solar cell rectangles that cover nearly 100% of the sun-visible area of the solar panels, rather than the solar wafer circles which, even though close-packed, cover about 90% of the sun-visible area of typical solar panels on earth. However, some solar panels on spacecraft have solar cells that cover only 30% of the sun-visible area.

Solar panels need to have a lot of surface area that can be pointed towards the Sun as the spacecraft moves. More exposed surface area means more electricity can be converted from light energy from the Sun. Since spacecraft have to be small, this limits the amount of power that can be produced.

All electrical circuits generate waste heat; in addition, solar arrays act as optical and thermal as well as electrical collectors. Heat must be radiated from their surfaces. High-power spacecraft may have solar arrays that compete with the active payload itself for thermal dissipation. The innermost panel of arrays may be "blank" to reduce the overlap of views to space. Such spacecraft include the higher-power communications satellites (e.g., later-generation TDRS) and Venus Express, not high-powered but closer to the Sun.


...
Wikipedia

...