The solar constant, a measure of flux density, is the conventional name for the mean solar electromagnetic radiation (the solar irradiance) per unit area that would be incident on a plane perpendicular to the rays, at a distance of one astronomical unit (AU) from the Sun (roughly the mean distance from the Sun to the Earth). The solar constant includes all types of solar radiation, not just the visible light. It is measured by satellite as being 1.361 kilowatts per square meter (kW/m²) at solar minimum and approximately 0.1% greater (roughly 1.362 kW/m²) at solar maximum. The solar "constant" is not a physical constant in the modern CODATA scientific sense; it varies in value, and has been called a "misconception". It has been shown to vary historically in the past 400 years over a range of less than 0.2 percent.
Solar irradiance is measured by satellite above Earth's atmosphere, and is then adjusted using the inverse square law to infer the magnitude of solar irradiance at one Astronomical Unit (AU) to evaluate the solar constant. The approximate average value cited, 1.3608 ± 0.0005 kW/m², which is 81.65 kJ/m² per minute, is equivalent to approximately 1.951 calories per minute per square centimeter, or 1.951 langleys per minute.
Solar output is nearly, but not quite, constant. Variations in total solar irradiance (TSI) were small and difficult to detect accurately with technology available before the satellite era (+/- 2% in 1954). Total solar output is now measured as varying (over the last three 11-year sunspot cycles) by approximately 0.1%; see solar variation for details.