Most of the civil engineering structures involve some type of structural element with direct contact with ground. When the external forces, such as earthquakes, act on these systems, neither the structural displacements nor the ground displacements, are independent of each other. The process in which the response of the soil influences the motion of the structure and the motion of the structure influences the response of the soil is termed as soil-structure interaction (SSI).
Conventional structural design methods neglect the SSI effects. Neglecting SSI is reasonable for light structures in relatively stiff soil such as low rise buildings and simple rigid retaining walls. The effect of SSI, however, becomes prominent for heavy structures resting on relatively soft soils for example nuclear power plants, high-rise buildings and elevated-highways on soft soil.
Damage sustained in recent earthquakes, such as the 1995 Kobe earthquake, have also highlighted that the seismic behavior of a structure is highly influenced not only by the response of the superstructure, but also by the response of the foundation and the ground as well. Hence, the modern seismic design codes, such as Standard Specifications for Concrete Structures: Seismic Performance Verification JSCE 2005 stipulate that the response analysis should be conducted by taking into consideration a whole structural system including superstructure, foundation and ground.
It has conventionally been considered that soil-structure interaction has a beneficial effect on the seismic response of a structure. Many design codes have suggested that the effect of SSI can reasonably be neglected for the seismic analysis of structures. This myth about SSI apparently stems from the false perception that SSI reduces the overall seismic response of a structure, and hence, leads to improved safety margins. Most of the design codes use oversimplified design spectra, which attain constant acceleration up to a certain period, and thereafter decreases monotonically with period. Considering soil-structure interaction makes a structure more flexible and thus, increasing the natural period of the structure compared to the corresponding rigidly supported structure. Moreover, considering the SSI effect increases the effective damping ratio of the system. The smooth idealization of design spectrum suggests smaller seismic response with the increased natural periods and effective damping ratio due to SSI. With this assumption, it was traditionally been considered that SSI can conveniently be neglected for conservative design. In addition, neglecting SSI tremendously reduces the complication in the analysis of the structures which has tempted designers to neglect the effect of SSI in the analysis.