Soil stabilization a general term for any physical, chemical, biological, or combined method of changing a natural soil to meet an engineering purpose. Improvements include increasing the weight bearing capabilities and performance of in-situ subsoils, sands, and other waste materials in order to strengthen road surfaces.
The prime objective of Soil Stabilization is to improve the California Bearing Ratio of in-situ soils by 4 to 6 times. The other prime objective of soil stabilization is to improve on-site materials to create a solid and strong sub-base and base courses. In certain regions of the world, typically developing countries and now more frequently in developed countries, soil stabilization is being used to construct the entire road.
Originally, soil stabilization was done by utilizing the binding properties of clay soils, cement-based products such as soil cement, and/or utilizing the "rammed earth" technique (soil compaction) and lime.
Some of the renewable technologies are: enzymes, surfactants, biopolymers, synthetic polymers, co-polymer based products, cross-linking styrene acrylic polymers, tree resins, ionic stabilizers, fiber reinforcement, calcium chloride, calcite, sodium chloride, magnesium chloride and more. Some of these new stabilizing techniques create hydrophobic surfaces and mass that prevent road failure from water penetration or heavy frosts by inhibiting the ingress of water into the treated layer.
However, recent technology has increased the number of traditional additives used for soil stabilization purposes. Such non-traditional stabilizers include: Polymer based products (e.g. cross-linking water-based styrene acrylic polymers that significantly improves the load-bearing capacity and tensile strength of treated soils), Copolymer Based Products, fiber reinforcement, calcium chloride, and Sodium Chloride.