*** Welcome to piglix ***

Soil carbon


Soil carbon includes both inorganic carbon as carbonate minerals, and as soil organic matter. Soil carbon plays a key role in the carbon cycle, and thus it is important in global climate models.

Soil carbon is present in two forms: inorganic and organic. Soil inorganic carbon consists of mineral forms of C, either from weathering of parent material, or from reaction of soil minerals with atmospheric CO2. Carbonate minerals are the dominant form of soil carbon in desert climates. Soil organic carbon is present as soil organic matter. It includes relatively available C as fresh plant remains and relatively inert C in materials derived from plant remains: humus and charcoal.

Of the 2,700 Gt of C stored in soils worldwide, 1550 GtC is organic and 950 GtC is inorganic carbon, which is approximately three times greater than the current atmospheric C and 240 times higher compared with the current annual fossil fuel emission. The balance of soil carbon is held in peat and wetlands (150 GtC), and in plant litter at the soil surface (50 GtC). This compares to 780 GtC in the atmosphere, and 600 GtC in all living organisms. The oceanic pool holds 38,200 GtC.

About 60 GtC/yr is added to soil. This 60 GtC/yr is the balance of 120 GtC/yr taken out of the atmosphere by terrestrial plant photosynthesis reduced by 60 GtC/yr plant respiration. An equivalent 60 GtC/yr is respired from soil, joining the 60G tC/yr plant respiration to return to the atmosphere.

Soil organic carbon is divided between living soil biota and dead biotic material derived from biomass. Together these comprise the soil food web, with the living component sustained by the biotic material component. Soil biota includes earthworms, nematodes, protozoa, fungi, bacteria and different arthropods.


...
Wikipedia

...