A reconfigurable antenna is an antenna capable of modifying dynamically its frequency and radiation properties in a controlled and reversible manner. In order to provide a dynamical response, reconfigurable antennas integrate an inner mechanism (such as RF switches, varactors, mechanical actuators or tunable materials) that enable the intentional redistribution of the RF currents over the antenna surface and produce reversible modifications over its properties. Reconfigurable antennas differ from smart antennas because the reconfiguration mechanism lies inside the antenna rather than in an external beamforming network. The reconfiguration capability of reconfigurable antennas is used to maximize the antenna performance in a changing scenario or to satisfy changing operating requirements.
Reconfigurable antennas can be classified according to the antenna parameter that is dynamically adjusted, typically the frequency of operation, radiation pattern or polarization.
Frequency reconfigurable antennas can adjust dynamically their frequency of operation. They are particularly useful in situations where several communications systems converge because the multiple antennas required can be replaced by a single reconfigurable antenna. Frequency reconfiguration is generally achieved by modifying physically or electrically the antenna dimensions using RF-switches, impedance loading or tunable materials.
Radiation pattern reconfigurability is based on the intentional modification of the spherical distribution of radiation pattern. Beam steering is the most extended application and consists in steering the direction of maximum radiation to maximize the antenna gain in a link with mobile devices. Pattern reconfigurable antennas are usually designed using movable/rotatable structures or including switchable and reactively-loaded parasitic elements.. In last 10 years, metamaterial-based reconfigurable antennas have gained attention due their small form factor, wide beam steering range and wireless applications.