SODAR (SOnic Detection And Ranging), also written as sodar, is a meteorological instrument used as a wind profiler to measure the scattering of sound waves by atmospheric turbulence. SODAR systems are used to measure wind speed at various heights above the ground, ae thermodynamic structure of the lower layer of the atmosphere.
Sodar systems are like radar (radio detection and ranging) and lidar (light radar) systems except that sound waves rather than radio or light waves are used for detection. Other names used for sodar systems include sounder, echosounder and acoustic radar.
Commercial sodars operated for the purpose of collecting upper-air wind measurements consist of antennas that transmit and receive acoustic signals. A mono-static system uses the same antenna for transmitting and receiving, while a bi-static system uses separate antennas. The difference between the two antenna systems determines whether atmospheric scattering is by temperature fluctuations (in mono-static systems), or by both temperature and wind velocity fluctuations (in bi-static systems).
Mono-static antenna systems can be divided into two categories: those using multiple axis, individual antennas and those using a single phased array antenna. The multiple-axis systems generally use three individual antennas aimed in specific directions to steer the acoustic beam. One antenna is generally aimed vertically, and the other two are tilted slightly from the vertical at an orthogonal angle. Each of the individual antennas may use a single transducer focused into a parabolic reflector to form a parabolic loudspeaker, or an array of speaker drivers and horns (transducers) all transmitting in-phase to form a single beam. Both the tilt angle from the vertical and the azimuth angle of each antenna are fixed when the system is set up.
Phased-array antenna systems use a single array of speaker drivers and horns (transducers), and the beams are electronically steered by phasing the transducers appropriately. To set up a phased-array antenna, the pointing direction of the array is either level, or oriented as specified by the manufacturer.