A snubber is a device used to suppress ("") a phenomenon such as voltage transients in electrical systems, pressure transients in fluid systems or excess force or rapid movement in mechanical systems.
Snubbers are frequently used in electrical systems with an inductive load where the sudden interruption of current flow leads to a sharp rise in voltage across the current switching device, in accordance with Faraday's law. This transient can be a source of electromagnetic interference (EMI) in other circuits. Additionally, if the voltage generated across the device is beyond what the device is intended to tolerate, it may damage or destroy it. The snubber provides a short-term alternative current path around the current switching device so that the inductive element may be discharged more safely and quietly. Inductive elements are often unintentional, but arise from the current loops implied by physical circuitry. While current switching is everywhere, snubbers will generally only be required where a major current path is switched, such as in power supplies. Snubbers are also often used to prevent arcing across the contacts of relays and switches and the electrical interference and welding/sticking of the contacts that can occur (see also arc suppression).
A simple RC snubber uses a small resistor (R) in series with a small capacitor (C). This combination can be used to suppress the rapid rise in voltage across a thyristor, preventing the erroneous turn-on of the thyristor; it does this by limiting the rate of rise in voltage (dV/dt) across the thyristor to a value which will not trigger it. An appropriately-designed RC snubber can be used with either DC or AC loads. This sort of snubber is commonly used with inductive loads such as electric motors. The voltage across a capacitor cannot change instantaneously, so a decreasing transient current will flow through it for a small fraction of a second, allowing the voltage across the switch to increase more slowly when the switch is opened. Determination of voltage rating can be difficult owing to the nature of transient waveforms, and may be defined simply by the power rating of the snubber components and the application. RC snubbers can be made discretely and are also built as a single component (see also Boucherot cell).