*** Welcome to piglix ***

SnoRNAs


Small nucleolar RNAs (snoRNAs) are a class of small RNA molecules that primarily guide chemical modifications of other RNAs, mainly ribosomal RNAs, transfer RNAs and small nuclear RNAs. There are two main classes of snoRNA, the C/D box snoRNAs, which are associated with methylation, and the H/ACA box snoRNAs, which are associated with pseudouridylation. SnoRNAs are commonly referred to as guide RNAs but should not be confused with the guide RNAs that direct RNA editing in trypanosomes.

After transcription, nascent rRNA molecules (termed pre-rRNA) undergo a series of processing steps to generate the mature rRNA molecule. Prior to cleavage by exo- and endonucleases, the pre-rRNA undergoes a complex pattern of nucleoside modifications. These include methylations and pseudouridylations, guided by snoRNAs.

Each snoRNA molecule acts as a guide for only one (or two) individual modifications in a target RNA. In order to carry out modification, each snoRNA associates with at least four protein molecules in an RNA/protein complex referred to as a small nucleolar ribonucleoprotein (snoRNP). The proteins associated with each RNA depend on the type of snoRNA molecule (see snoRNA guide families below). The snoRNA molecule contains an antisense element (a stretch of 10-20 nucleotides), which are base complementary to the sequence surrounding the base (nucleotide) targeted for modification in the pre-RNA molecule. This enables the snoRNP to recognise and bind to the target RNA. Once the snoRNP has bound to the target site, the associated proteins are in the correct physical location to catalyse the chemical modification of the target base.

The two different types of rRNA modification (methylation and pseudouridylation) are directed by two different families of snoRNAs. These families of snoRNAs are referred to as antisense C/D box and H/ACA box snoRNAs based on the presence of conserved sequence motifs in the snoRNA. There are exceptions, but as a general rule C/D box members guide methylation and H/ACA members guide pseudouridylation. The members of each family may vary in biogenesis, structure, and function, but each family is classified by the following generalised characteristics. For more detail, see review. SnoRNAs are classified under small nuclear RNA in MeSH. The HGNC, in collaboration with snoRNABase and experts in the field, has approved unique names for human genes that encode snoRNAs.


...
Wikipedia

...