In algebraic geometry, a morphism between schemes is said to be smooth if
(iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties.
If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.
There are many equivalent definitions of a smooth morphism. Let be locally of finite presentation. Then the following are equivalent.
A morphism of finite type is étale if and only if it is smooth and quasi-finite.
A smooth morphism is stable under base change and composition. A smooth morphism is locally of finite presentation.
A smooth morphism is universally locally acyclic.
One can define smoothness without reference to geometry. We say that an S-scheme X is formally smooth if for any affine S-scheme T and a subscheme of T given by a nilpotent ideal, is surjective where we wrote . Then a morphism locally of finite type is smooth if and only if it is formally smooth.