*** Welcome to piglix ***

Smooth completion


In algebraic geometry, the smooth completion (or smooth compactification) of a smooth affine algebraic curve X is a complete smooth algebraic curve which contains X as an open subset. Smooth completions exist and are unique over a perfect field.

An affine form of a hyperelliptic curve may be presented as where and P(x) has distinct roots and has degree at least 5. The Zariski closure of the affine curve in is singular at the unique infinite point added. Nonetheless, the affine curve can be embedded in a unique compact Riemann surface called its smooth completion. The projection of the Riemann surface to is 2-to-1 over the singular point at infinity if has even degree, and 1-to-1 (but ramified) otherwise.


...
Wikipedia

...