Small modular reactors (SMRs) are a type of nuclear fission reactor which are smaller than conventional reactors, and manufactured at a plant and brought to a site to be fully constructed. Modular reactors allow for less on-site construction, increased containment efficiency, and heightened nuclear materials security. SMRs have been considered to be less expensive than traditional nuclear reactors, although critics have questioned the cost benefits when compared to solar energy, wind energy, and natural gas.
Small reactors are defined by the International Atomic Energy Agency as those with an electricity output of less than 300 MWe, although general opinion is that anything with an output of less than 500 MWe counts as a small reactor.
Electricity was first generated from nuclear energy on December 20, 1951 in the high desert of south-eastern Idaho. The original electrical output was estimated at 45 kW. Since then, reactors have grown much larger, with electrical outputs of over 1,400 MW. Almost 50 years after the first nuclear energy was generated, applications for reactors with low electrical outputs are being introduced again.
According to a report prepared by Oak Ridge National Laboratory, the long-term goal of nuclear power is to "develop an economic, safe, environmentally acceptable, unlimited supply of energy for society."
Many of these smaller reactor designs are being made "modular" – in other words, they will be manufactured and assembled at a central factory location. They are then sent to their new location where they can be installed with very little difficulty. These SMRs are particularly useful in remote locations where there is usually a deficiency of trained workers and a higher cost of shipping. Containment is more efficient, and proliferation concerns are lessened. SMRs are also more flexible in that they do not necessarily need to be hooked into a large power grid, and can generally be attached to other modules to provide increased power supplies if necessary.
There may be some economic benefits to SMRs as well. While the small power output of an SMR means that electricity will cost more per MW than it would from a larger reactor, the initial cost of building the plant is much less than that of constructing a much more complex, non-modular, large nuclear plant. It makes an SMR a smaller-risk venture for power companies than other nuclear power plants.