*** Welcome to piglix ***

Small-world networks


A small-world network is a type of mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other and most nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is:

A certain category of small-world networks were identified as a class of random graphs by Duncan Watts and Steven Strogatz in 1998. They noted that graphs could be classified according to two independent structural features, namely the clustering coefficient, and average node-to-node distance (also known as average shortest path length). Purely random graphs, built according to the Erdős–Rényi (ER) model, exhibit a small average shortest path length (varying typically as the logarithm of the number of nodes) along with a small clustering coefficient. Watts and Strogatz measured that in fact many real-world networks have a small average shortest path length, but also a clustering coefficient significantly higher than expected by random chance. Watts and Strogatz then proposed a novel graph model, currently named the Watts and Strogatz model, with (i) a small average shortest path length, and (ii) a large clustering coefficient. The crossover in the Watts–Strogatz model between a "large world" (such as a lattice) and a small world was first described by Barthelemy and Amaral in 1999. This work was followed by a large number of studies, including exact results (Barrat and Weigt, 1999; Dorogovtsev and Mendes; Barmpoutis and Murray, 2010). Braunstein found that for weighted ER networks where the weights have a very broad distribution, the optimal path scales becomes significantly longer and scales as N1/3.

Small-world networks tend to contain cliques, and near-cliques, meaning sub-networks which have connections between almost any two nodes within them. This follows from the defining property of a high clustering coefficient. Secondly, most pairs of nodes will be connected by at least one short path. This follows from the defining property that the mean-shortest path length be small. Several other properties are often associated with small-world networks. Typically there is an over-abundance of hubs – nodes in the network with a high number of connections (known as high degree nodes). These hubs serve as the common connections mediating the short path lengths between other edges. By analogy, the small-world network of airline flights has a small mean-path length (i.e. between any two cities you are likely to have to take three or fewer flights) because many flights are routed through hub cities.


...
Wikipedia

...